翻訳と辞書
Words near each other
・ Stein Bråthen
・ Stein Bugge
・ Stein Castle
・ Stein Castle (Bavaria)
・ Stein Castle (Saxony)
・ Stein Castle, Aargau
・ Stein Endresen
・ Stein Erik Gullikstad
・ Stein Erik Hagen
・ Stein Erik Lauvås
・ Stein Erik Lunde
・ Stein Erik Tafjord
・ Stein Erik Ulvund
・ Stein Eriksen
・ Stein Eriksen Lodge Deer Valley
Stein factorization
・ Stein Føyen
・ Stein Glacier
・ Stein Gran
・ Stein Grieg Halvorsen
・ Stein H. Annexstad
・ Stein Hannevik
・ Stein Haugen
・ Stein Henrik Tuff
・ Stein House
・ Stein Huysegems
・ Stein IAS
・ Stein Inge Brækhus
・ Stein Ingebrigtsen
・ Stein Institute for Research on Aging


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Stein factorization : ウィキペディア英語版
Stein factorization
In algebraic geometry, the Stein factorization, introduced by for the case of complex spaces, states that a proper morphism can be factorized as a composition of a finite mapping and a proper morphism with connected fibers. Roughly speaking, Stein factorization contracts the connected components of the fibers of a mapping to points.
One version for schemes states the following:

Let ''X'' be a scheme, ''S'' a locally noetherian scheme and f: X \to S a proper morphism. Then one can write
:f = g \circ f'
where g: S' \to S is a finite morphism and f': X \to S' is a proper morphism so that f'_
* \mathcal_X = \mathcal_.

The existence of this decomposition itself is not difficult. See below. But, by Zariski's connectedness theorem, the last part in the above says that the fiber f'^(s) is connected for any s \in S. It follows:
Corollary: For any s \in S, the set of connected components of the fiber f^(s) is in bijection with the set of points in the fiber g^(s).
== Proof ==
Set:
:S' = Specf_
* \mathcal_X
where Spec is the relative Spec. The construction gives us the natural map g: S' \to S, which is finite since \mathcal_X is coherent and ''f'' is proper. ''f'' factors through ''g'' and so we get f': X \to S'., which is proper. By construction f'_
* \mathcal_X = \mathcal_. One then uses the theorem on formal functions to show that the last equality implies f' has connected fibers. (This part is sometimes referred to as Zariski's connectedness theorem.)

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Stein factorization」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.